Topological classification of countable IFS-attractors

Magdalena Nowak

The Jan Kochanowski University in Kielce / Jagiellonian University in Krakow

Hejnice, January 2013

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Definition

If (X, d) is a complete metric space and $\mathcal{F} = \{f_1, f_2, \dots, f_n\}$ is a collection of (weak) contractions of X to itself, then \mathcal{F} is said to be an **Iterated Function System** (IFS).

A map $f: X \to X$ is a *contraction* if there exists a constant $\alpha \in (0, 1)$ such that for any $x, y \in X$

 $d(f(x), f(y)) \le \alpha \cdot d(x, y).$

A map $f: X \to X$ is called a *weak contraction* if for each $x \neq y$, $x, y \in X$

d(f(x), f(y)) < d(x, y).

・ロト ・回ト ・ヨト ・ヨト

Definition

If (X, d) is a complete metric space and $\mathcal{F} = \{f_1, f_2, \dots, f_n\}$ is a collection of (weak) contractions of X to itself, then \mathcal{F} is said to be an **Iterated Function System** (IFS).

A map $f: X \to X$ is a *contraction* if there exists a constant $\alpha \in (0, 1)$ such that for any $x, y \in X$

$$d(f(x), f(y)) \leq \alpha \cdot d(x, y).$$

A map $f: X \to X$ is called a *weak contraction* if for each $x \neq y$, $x, y \in X$

$$d(f(x), f(y)) < d(x, y).$$

IFS-attractors

Definition

The **attractor of the IFS** \mathcal{F} (*IFS-attractor*) it is the unique nonempty compact set $\mathcal{K} \subset X$ which is invariant by the IFS \mathcal{F} , in the sense:

 $\mathcal{K} = f_1(\mathcal{K}) \cup f_2(\mathcal{K}) \cup \cdots \cup f_n(\mathcal{K}).$

イロト イポト イヨト イヨト

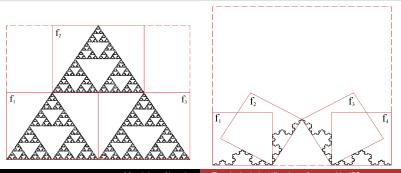
-

IFS-attractors

Definition

The **attractor of the IFS** \mathcal{F} (*IFS-attractor*) it is the unique nonempty compact set $\mathcal{K} \subset X$ which is invariant by the IFS \mathcal{F} , in the sense:

$$\mathcal{K} = f_1(\mathcal{K}) \cup f_2(\mathcal{K}) \cup \cdots \cup f_n(\mathcal{K}).$$



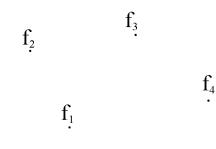
Magdalena Nowak

Topological classification of countable IFS-attractors

Countable sets

Remark

Every finite set is an IFS-attractor in every metric.

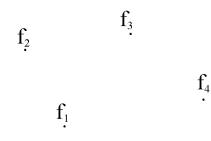


What about countable compact sets?

Countable sets

Remark

Every finite set is an IFS-attractor in every metric.



What about countable compact sets?

- 4 同 2 4 日 2 4 日 2

Scattered space

A compact metric space is countable iff it is scattered.

Definition

A space X is called **scattered** iff every non-empty subspace Y has an isolated point in Y.

Mazurkiewicz-Sierpiński theorem

Every countable compact scattered space X is homeomorphic to the space $\omega^{\beta} \cdot n + 1$ with the order topology, where $\beta = ht(X)$ and $n = |X^{(\beta)}|$ is finite.

$$X \backsim \omega^{\beta} \cdot n + 1 \backsim (\omega^{\beta} + 1) \cdot n$$

Scattered space

A compact metric space is countable iff it is scattered.

Definition

A space X is called **scattered** iff every non-empty subspace Y has an isolated point in Y.

Mazurkiewicz-Sierpiński theorem

Every countable compact scattered space X is homeomorphic to the space $\omega^{\beta} \cdot n + 1$ with the order topology, where $\beta = ht(X)$ and $n = |X^{(\beta)}|$ is finite.

$$X \backsim \omega^{eta} \cdot n + 1 \backsim (\omega^{eta} + 1) \cdot n$$

For a scattered space X let

 $X' = \{x \in X | x \text{ is an accumulation point of } X\}$

be the Cantor-Bendixson derivative of X.

- $X^{(\alpha+1)} = (X^{(\alpha)})'$
- $X^{(\alpha)} = \bigcap_{\beta < \alpha} X^{(\beta)}$ for a limit ordinal α .

Definition

The height of X is $ht(X) = min\{\beta | X^{(\beta)} \text{ is finite}\}.$

Definition

For each element *x* of scattered space *X*, we define its Cantor-Bendixson rank as

$\mathsf{rk}(x) = \alpha$ such that $x \in X^{(\alpha)} \setminus X^{(\alpha+1)}$.

For a scattered space X let

 $X' = \{x \in X | x \text{ is an accumulation point of } X\}$

be the Cantor-Bendixson derivative of X.

•
$$X^{(\alpha+1)} = (X^{(\alpha)})'$$

• $X^{(\alpha)} = \bigcap_{\beta < \alpha} X^{(\beta)}$ for a limit ordinal α

Definition

The height of X is $ht(X) = min\{\beta | X^{(\beta)} \text{ is finite}\}.$

Definition

For each element *x* of scattered space *X*, we define its Cantor-Bendixson rank as

$\mathsf{rk}(x) = \alpha$ such that $x \in X^{(\alpha)} \setminus X^{(\alpha+1)}$.

For a scattered space X let

 $X' = \{x \in X | x \text{ is an accumulation point of } X\}$

be the Cantor-Bendixson derivative of X.

•
$$X^{(\alpha+1)} = (X^{(\alpha)})'$$

• $X^{(\alpha)} = \bigcap_{\beta < \alpha} X^{(\beta)}$ for a limit ordinal α

Definition

The height of X is $ht(X) = min\{\beta | X^{(\beta)} \text{ is finite}\}.$

Definition

For each element *x* of scattered space *X*, we define its Cantor-Bendixson rank as

 $\mathsf{rk}(x) = \alpha$ such that $x \in X^{(\alpha)} \setminus X^{(\alpha+1)}$.

For a scattered space X let

 $X' = \{x \in X | x \text{ is an accumulation point of } X\}$

be the Cantor-Bendixson derivative of X.

•
$$X^{(\alpha+1)} = (X^{(\alpha)})'$$

• $X^{(\alpha)} = \bigcap_{\beta < \alpha} X^{(\beta)}$ for a limit ordinal α .

Definition

The height of X is
$$ht(X) = min\{\beta | X^{(\beta)} \text{ is finite}\}.$$

Definition

For each element x of scattered space X, we define its Cantor-Bendixson rank as

$$\mathsf{rk}(x) = lpha$$
 such that $x \in X^{(lpha)} \setminus X^{(lpha+1)}$.

Some properties of height and Cantor-Bendixson rank.

For U and V scattered compact space:

- if $U \subset V$ then $ht(U) \leq ht(V)$
- $ht(U \cup V) = max(ht(U), ht(V))$
- $ht(f(U)) \le ht(U)$ for every continuous function f
- $ht(U) \ge rk(x)$ for every open neighborhood U of x

・ 同 ト ・ ヨ ト ・ ヨ ト

Topological classification of countable IFS-attractors

Theorem (M.N.)

If $X = \omega^{\beta} \cdot n + 1$ be a scattered, compact, metric space and $n \geq 1$, then

- ② $\beta = \alpha + 1 \Rightarrow$ there exist $f, g: X \to \mathbb{R}$ homeomorphisms such that
 - f(X) is an IFS-attractor
 - 2 g(X) is not an attractor of any weak IFS

ⓐ β > 0 limit ordinal ⇒ X is a weak IFS-attractor in no metric

Topological classification of countable IFS-attractors

Theorem (M.N.)

If $X = \omega^{\beta} \cdot n + 1$ be a scattered, compact, metric space and $n \ge 1$, then

- $0 \ \beta = 0 \Rightarrow X \text{ is IFS-attractor in every metric}$
 - - f(X) is an IFS-attractor
 - 2 g(X) is not an attractor of any weak IFS
- ⓐ β > 0 limit ordinal ⇒ X is a weak IFS-attractor in no metric

・ロン ・聞と ・ ヨン ・ ヨン

Topological classification of countable IFS-attractors

Theorem (M.N.)

If $X = \omega^{\beta} \cdot n + 1$ be a scattered, compact, metric space and $n \ge 1$, then

- **()** $\beta = 0 \Rightarrow X$ is IFS-attractor in every metric
- - f(X) is an IFS-attractor
 - **2** g(X) is not an attractor of any weak IFS

3 $\beta > 0$ limit ordinal $\Rightarrow X$ is a weak IFS-attractor in no metric

- 4 同 2 4 日 2 4 日 2

Topological classification of countable IFS-attractors

Theorem (M.N.)

If $X = \omega^{\beta} \cdot n + 1$ be a scattered, compact, metric space and $n \ge 1$, then

- $0 \ \beta = 0 \Rightarrow X \text{ is IFS-attractor in every metric}$
- 𝔅 β = α + 1 ⇒ there exist f, g: X → ℝ homeomorphisms such that
 - f(X) is an IFS-attractor
 - **2** g(X) is not an attractor of any weak IFS
- **③** $\beta > 0$ limit ordinal $\Rightarrow X$ is a weak IFS-attractor in no metric

(人間) 人 ヨト 人 ヨト

f(X) is contractive IFS-attractor when $\beta = \alpha + 1$

Theorem

For every $\varepsilon > 0$ and every countable ordinal α the scattered space $\omega^{\alpha+1} + 1$ is homeomorphic to the attractor of an iterated function system consisting of two contractions $\{\varphi, \varphi_{\alpha+1}\}$ in the unit interval I = [0, 1], such that

$\max(\operatorname{Lip}(\varphi),\operatorname{Lip}(\varphi_{\alpha+1})) < \varepsilon.$

emma

If A and B are disjoint IFS-attractors then $A \cup B$ is also IFS-attractor.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

f(X) is contractive IFS-attractor when $\beta = \alpha + 1$

Theorem

For every $\varepsilon > 0$ and every countable ordinal α the scattered space $\omega^{\alpha+1} + 1$ is homeomorphic to the attractor of an iterated function system consisting of two contractions $\{\varphi, \varphi_{\alpha+1}\}$ in the unit interval I = [0, 1], such that

$$\max(\operatorname{Lip}(\varphi),\operatorname{Lip}(\varphi_{\alpha+1}))$$

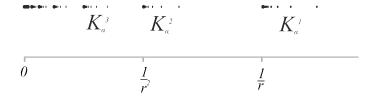
Lemma

If A and B are disjoint IFS-attractors then $A \cup B$ is also IFS-attractor.

Successor height: $\omega^{\alpha+1}+1$

$$K_{lpha} \backsim \omega^{lpha} + 1$$

$$\mathcal{K}_{\alpha+1} = \{0\} \cup \bigcup_{i \in \mathbb{N}} \mathcal{K}^i_{\alpha} \text{ and } r > 3.$$



Definitions Successor height Main theorem

Successor height: $\omega^{\alpha+1} + 1$

$$\begin{split} & \mathcal{K}_{\alpha} \backsim \omega^{\alpha} + 1 \\ & \mathcal{K}_{\alpha+1} = \{0\} \cup \bigcup_{i \in \mathbb{N}} \mathcal{K}_{\alpha}^{i} \text{ and } r > 3. \\ & \mathcal{K}_{\alpha+1} = \varphi(\mathcal{K}_{\alpha+1}) \cup \varphi_{\alpha+1}(\mathcal{K}_{\alpha+1}) \end{split}$$

.

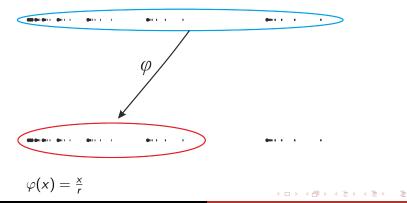
. /

イロト イポト イヨト イヨト

Successor height: $\omega^{\alpha+1}+1$

$$egin{aligned} \mathcal{K}_lpha & \sim \omega^lpha + 1 \ \mathcal{K}_{lpha+1} &= \{0\} \cup igcup_{i \in \mathbb{N}} \mathcal{K}^i_lpha ext{ and } r > 3. \end{aligned}$$

$$\mathcal{K}_{\alpha+1} = \varphi(\mathcal{K}_{\alpha+1}) \cup \varphi_{\alpha+1}(\mathcal{K}_{\alpha+1})$$



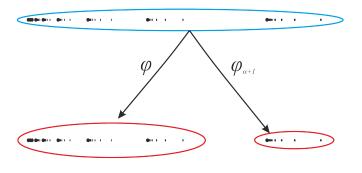
Magdalena Nowak Topological classification of countable IFS-attractors

Successor height Main theorem

Successor height: $\omega^{\alpha+1}+1$

 $\varphi(x) = \frac{x}{r}$

$$egin{aligned} & \mathcal{K}_{lpha} \backsim \omega^{lpha} + 1 \ & \mathcal{K}_{lpha+1} = \{0\} \cup igcup_{i \in \mathbb{N}} \mathcal{K}^i_{lpha} ext{ and } r > 3. \ & \mathcal{K}_{lpha+1} = arphi(\mathcal{K}_{lpha+1}) \cup arphi_{lpha+1}(\mathcal{K}_{lpha+1}) \end{aligned}$$



. /

$$\varphi_{\alpha+1}(\mathcal{K}_{\alpha+1}) = \mathcal{K}_{\alpha}^1 \text{ and } \underset{\Box}{\operatorname{Lip}}(\varphi_{\alpha+1}) = \frac{1}{r_{\Xi^2}}$$

Magdalena Nowak Topological classification of countable IFS-attractors

g(X) is not an attractor of any weak IFS when eta=lpha+1

Theorem

There exists a convergent sequence $\mathcal{K} \backsim \omega + 1$ which is not a weak IFS-attractor in [0, 1] with standard Euclidean metric.

Theorem

There exists a compact scattered metric space $\mathcal{K} \sim \omega^{\alpha+1} + 1$ which is not a weak IFS-attractor in [0, 1] with standard Euclidean metric.

_emma

If $X = X_0 \cup ... \cup X_n$ is a weak IFS-attractor and each X_i is compact and isometric to X_0 and dist $(X_i, X_j) > \text{diam}(X_0)$ for every $i < j \le n$ then every X_i is a weak IFS-attractor.

<ロ> (日) (日) (日) (日) (日)

g(X) is not an attractor of any weak IFS when $\beta = \alpha + 1$

Theorem

There exists a convergent sequence $\mathcal{K} \backsim \omega + 1$ which is not a weak IFS-attractor in [0, 1] with standard Euclidean metric.

Theorem

There exists a compact scattered metric space $\mathcal{K} \backsim \omega^{\alpha+1} + 1$ which is not a weak IFS-attractor in [0, 1] with standard Euclidean metric.

_emma

If $X = X_0 \cup ... \cup X_n$ is a weak IFS-attractor and each X_i is compact and isometric to X_0 and dist $(X_i, X_j) > \text{diam}(X_0)$ for every $i < j \le n$ then every X_i is a weak IFS-attractor.

<ロ> (日) (日) (日) (日) (日)

g(X) is not an attractor of any weak IFS when eta=lpha+1

Theorem

There exists a convergent sequence $\mathcal{K} \backsim \omega + 1$ which is not a weak IFS-attractor in [0, 1] with standard Euclidean metric.

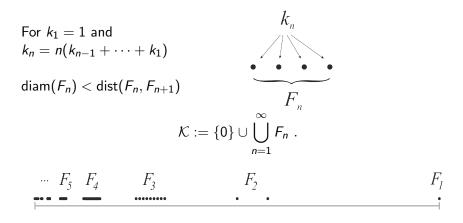
Theorem

There exists a compact scattered metric space $\mathcal{K} \backsim \omega^{\alpha+1} + 1$ which is not a weak IFS-attractor in [0, 1] with standard Euclidean metric.

Lemma

If $X = X_0 \cup ... \cup X_n$ is a weak IFS-attractor and each X_i is compact and isometric to X_0 and dist $(X_i, X_j) > \text{diam}(X_0)$ for every $i < j \le n$ then every X_i is a weak IFS-attractor.

Construction of $\mathcal{K} \backsim \omega + 1$



(4月) (4日) (4日)

Contractions on ${\cal K}$

There are two kinds of weak contractions $\varphi \colon \mathcal{K} \to \mathcal{K}$:

・ロト ・部ト ・モト ・モト

Contractions on $\mathcal K$

There are two kinds of weak contractions $\varphi \colon \mathcal{K} \to \mathcal{K}$:

 $\ \, \bullet \ \, \varphi(0) \neq 0 \Rightarrow \varphi(\mathcal{K}) \ \, \text{is finite} \ \,$

イロト イポト イヨト イヨト

Contractions on \mathcal{K}

There are two kinds of weak contractions $\varphi \colon \mathcal{K} \to \mathcal{K}$:

•
$$\varphi(0) \neq 0 \Rightarrow \varphi(\mathcal{K})$$
 is finite
• $\varphi(0) = 0 \Rightarrow \varphi(F_n) \subset \mathcal{K} \setminus (F_n \cup \cdots \cup F_1)$ for all $n \in \mathbb{N}^+$

 $\mathsf{diam}(F_n) < \mathsf{dist}(F_n, F_{n+1})$

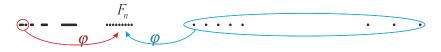
....

Contractions on \mathcal{K}

There are two kinds of weak contractions $\varphi \colon \mathcal{K} \to \mathcal{K}$:

• $\varphi(0) \neq 0 \Rightarrow \varphi(\mathcal{K})$ is finite

 $\ \, { \ \, { \ 0 } } \ \, \varphi(0)=0 \Rightarrow \varphi(F_n)\subset \mathcal{K}\setminus (F_n\cup\cdots\cup F_1) \ \, \text{for all} \ \, n\in\mathbb{N}^+$



End of the proof

Suppose that \mathcal{K} is an IFS-attractor. $\mathcal{K} = \bigcup_{i=1}^{r} \varphi_i(\mathcal{K})$

We can write the set \mathcal{K} as the union $\mathcal{K} = \bigcup_{i=1}^{m} \varphi_i(\mathcal{K}) \cup \bigcup_{i=m+1}^{r} \varphi_i(\mathcal{K})$

For almost every *n* we have $F_n \subset \bigcup_{i=1}^m \varphi_i(F_{n-1} \cup \cdots \cup F_1)$ so

$$k_n = |F_n| \leq |\bigcup_{i=1}^m \varphi_i(F_{n-1} \cup \cdots \cup F_1)| \leq m(k_{n-1} + \cdots + k_1).$$

But $k_n = n(k_{n-1} + \cdots + k_1)$ so for n > m we get a contradiction.

g(X) is not an attractor of any weak IFS when eta=lpha+1

Theorem

There exists a convergent sequence $\mathcal{K} \backsim \omega + 1$ which is not a weak IFS-attractor in [0, 1] with standard Euclidean metric.

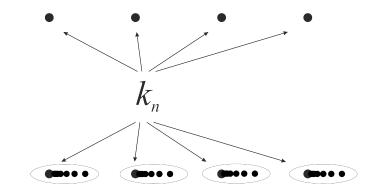
Theorem

There exists a compact scattered metric space $\mathcal{K} \backsim \omega^{\alpha+1} + 1$ which is not a weak IFS-attractor in [0, 1] with standard Euclidean metric.

Lemma

If $X = X_0 \cup ... \cup X_n$ is a weak IFS-attractor and each X_i is compact and isometric to X_0 and dist $(X_i, X_j) > \text{diam}(X_0)$ for every $i < j \le n$ then every X_i is a weak IFS-attractor.

Generalization of F_n



 $diam(F_n) < dist(F_n, F_{n+1})$

<ロ> (日) (日) (日) (日) (日)

X is never IFS-attractor when $ht(X) = \beta > 0$ limit ordinal

Theorem

For a limit ordinal β the scattered space $\mathcal{K} \backsim \omega^{\beta} \cdot n + 1$ is not homeomorphic to any IFS-attractor consisting of weak contractions.

Proof:

Suppose that $\mathcal{K} \sim \omega^{\beta} \cdot n + 1$ has a fixed metric d and there exists IFS \mathcal{F} such that $\mathcal{K} = \bigcup_{f \in \mathcal{F}} f(\mathcal{K})$. Denote by $D = \mathcal{K}^{(\beta)}$ a set of points from \mathcal{K} of Cantor-Bendixson

rank β . n = |D|.

If $f \in \mathcal{F}_1$ then $f(D) \cap D \neq \emptyset$

Theorem

For a limit ordinal β the scattered space $\mathcal{K} \backsim \omega^{\beta} \cdot n + 1$ is not homeomorphic to any IFS-attractor consisting of weak contractions.

Proof:

Suppose that $\mathcal{K} \backsim \omega^{\beta} \cdot n + 1$ has a fixed metric d and there exists IFS \mathcal{F} such that $\mathcal{K} = \bigcup_{f \in \mathcal{F}} f(\mathcal{K})$. Denote by $D = \mathcal{K}^{(\beta)}$ a set of points from \mathcal{K} of Cantor-Bendixson rank β . n = |D|.

If $f \in \mathcal{F}_1$ then $f(D) \cap D \neq \emptyset$

イロト イポト イヨト イヨト

Theorem

For a limit ordinal β the scattered space $\mathcal{K} \backsim \omega^{\beta} \cdot n + 1$ is not homeomorphic to any IFS-attractor consisting of weak contractions.

Proof:

Suppose that $\mathcal{K} \backsim \omega^{\beta} \cdot n + 1$ has a fixed metric d and there exists IFS \mathcal{F} such that $\mathcal{K} = \bigcup_{f \in \mathcal{F}} f(\mathcal{K})$. Denote by $D = \mathcal{K}^{(\beta)}$ a set of points from \mathcal{K} of Cantor-Bendixson rank β . n = |D|.

If $f \in \mathcal{F}_1$ then $f(D) \cap D \neq \emptyset$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

For a limit ordinal β the scattered space $\mathcal{K} \backsim \omega^{\beta} \cdot n + 1$ is not homeomorphic to any IFS-attractor consisting of weak contractions.

Proof:

Suppose that $\mathcal{K} \sim \omega^{\beta} \cdot n + 1$ has a fixed metric d and there exists IFS \mathcal{F} such that $\mathcal{K} = \bigcup_{f \in \mathcal{F}} f(\mathcal{K})$. Denote by $D = \mathcal{K}^{(\beta)}$ a set of points from \mathcal{K} of Cantor-Bendixson rank β . n = |D|.

If $f \in \mathcal{F}_1$ then $f(D) \cap D \neq \emptyset$

(4 同) 4 ヨ) 4 ヨ)

Theorem

For a limit ordinal β the scattered space $\mathcal{K} \backsim \omega^{\beta} \cdot n + 1$ is not homeomorphic to any IFS-attractor consisting of weak contractions.

Proof:

Suppose that $\mathcal{K} \sim \omega^{\beta} \cdot n + 1$ has a fixed metric d and there exists IFS \mathcal{F} such that $\mathcal{K} = \bigcup_{f \in \mathcal{F}} f(\mathcal{K})$. Denote by $D = \mathcal{K}^{(\beta)}$ a set of points from \mathcal{K} of Cantor-Bendixson rank β . n = |D|.

If $f \in \mathcal{F}_1$ then $f(D) \cap D \neq \emptyset$

(4 同) 4 ヨ) 4 ヨ)

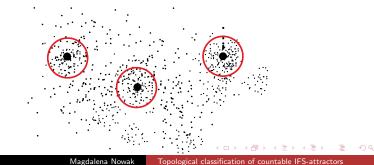
Definitions Main theorem	Classification of countable IFS-attractors Successor height
	Limit height

Proof

Consecutive derivatives $\mathcal{K}^{(\rho)}$ cluster around $D = \bigcap_{\rho < \beta} \mathcal{K}^{(\rho)}$ so there exists ρ such that $\max_{f \in \mathcal{F}_0} \operatorname{ht}(f(\mathcal{K})) < \rho < \beta$ and for |D| > 1

$$\mathcal{K}^{(\rho)} \subset \bigcup_{x \in D} B(x, \frac{\varepsilon}{2})$$

where $\varepsilon = \min\{d(x, y) | x \neq y; x, y \in D \cup \bigcup_{f \in \mathcal{F}_1} f(D)\} > 0.$



Definitions	Classification of countable IFS-attractors
Main theorem	Successor height
	Limit height

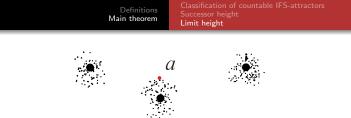
Proof

Consecutive derivatives $\mathcal{K}^{(\rho)}$ cluster around $D = \bigcap_{\rho < \beta} \mathcal{K}^{(\rho)}$ so there exists ρ such that $\max_{f \in \mathcal{F}_0} \operatorname{ht}(f(\mathcal{K})) < \rho < \beta$ and for |D| > 1

$$\mathcal{K}^{(
ho)} \subset \bigcup_{x \in D} B(x, \frac{\varepsilon}{2})$$

where $\varepsilon = \min\{d(x, y) | x \neq y; x, y \in D \cup \bigcup_{f \in \mathcal{F}_1} f(D)\} > 0.$

通 とう きょう く きょ

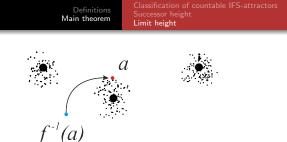


There exists an element $a \in \mathcal{K}^{(\rho)}$ such that

$$dist(a, D) = \sup_{x \in \mathcal{K}^{(\rho)}} d(x, D).$$

イロト イポト イヨト イヨト

3

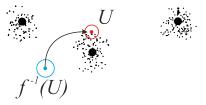


There exists an element $a \in \mathcal{K}^{(\rho)}$ such that

$$dist(a, D) = \sup_{x \in \mathcal{K}^{(\rho)}} d(x, D).$$

イロト イポト イヨト イヨト

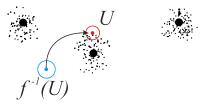
3



There exists an element $a \in \mathcal{K}^{(\rho)}$ such that

$$dist(a, D) = \sup_{x \in \mathcal{K}^{(\rho)}} d(x, D).$$

We can find a clopen neighborhood U of a such that $f^{-1}(U) \cap \mathcal{K}^{(\rho)} \neq \emptyset$ for every $f \in \mathcal{F}_1$.

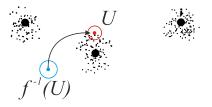


There exists an element $a \in \mathcal{K}^{(\rho)}$ such that

$$dist(a, D) = \sup_{x \in \mathcal{K}^{(\rho)}} d(x, D).$$

We can find a clopen neighborhood U of a such that $f^{-1}(U) \cap \mathcal{K}^{(\rho)} \neq \emptyset$ for every $f \in \mathcal{F}_1$. a) $\operatorname{ht}(f^{-1}(U)) < \rho$ for $f \in \mathcal{F}_1$ b) $\operatorname{ht}(U) \ge \rho$

伺下 イヨト イヨト



There exists an element $a \in \mathcal{K}^{(\rho)}$ such that

$$dist(a, D) = \sup_{x \in \mathcal{K}^{(\rho)}} d(x, D).$$

We can find a clopen neighborhood U of a such that $f^{-1}(U) \cap \mathcal{K}^{(\rho)} \neq \emptyset$ for every $f \in \mathcal{F}_1$. a) $\operatorname{ht}(f^{-1}(U)) < \rho$ for $f \in \mathcal{F}_1$ b) $\operatorname{ht}(U) \ge \rho$ $U = \bigcup_{f \in \mathcal{F}} f(f^{-1}(U))$

- M. Kwieciński, A locally connected continuum which is not an *IFS attractor*, Bull. Polish Acad. Sci. Math. **47**:2 (1999), 127–132.
- S. Mazurkiewicz, W. Sierpiński. *Contribution a la topologie des ensembles dénombrables*, Fund. Math. **1** (1920), 17–27.
- M.Nowak, Topological classification of scattered IFS-attractors, Preprint: (http://arxiv.org/abs/1204.4797)

・吊り ・ヨト ・ヨト